Содержание:
Как найти квадрат отрицательного числа? Что можно сказать о значении квадрата любого числа?
Чтобы найти квадрат числа, надо это число взять множителем два раза.
Соответственно, чтобы возвести в квадрат отрицательное число, надо найти произведение двух множителей, каждый из которых равен этому отрицательному числу.
При умножении отрицательных чисел получаем положительное число. Значит, знак «минус» при возведении в квадрат отрицательного числа уходит:
Следовательно, квадрат отрицательного числа равен квадрату противоположному ему числа:
Таким образом, значение квадрата любого отрицательного числа равно положительному числу.
Квадрат положительного числа является числом положительным.
Квадрат нуля равен нулю.
Вывод: квадрат любого числа является неотрицательным числом:
Чтобы возвести в квадрат отрицательное число, можно возвести в квадрат противоположное ему число (знак «-» не писать).
Найти квадрат отрицательного числа:
(При вычислении квадратов можно пользоваться готовыми значениями).
(Найти квадрат дроби можно одним из двух способов).
2 Comments
А что насчёт -(4)в квадрате.
Пожалуйста ответьте
Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.
Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.
Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.
Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 4 6 и произносят «четыре в шестой степени».
4 · 4 · 4 · 4 · 4 · 4 = 4 6
Выражение 4 6 называют степенью числа, где:
- 4 — основание степени;
- 6 — показатель степени.
В общем виде степень с основанием « a » и показателем « n » записывается с помощью выражения:
Степенью числа « a » с натуральным показателем « n », бóльшим 1 , называется произведение « n » одинаковых множителей, каждый из которых равен числу « a ».
Запись « a n » читается так: « а в степени n » или « n -ая степень числа a ».
Исключение составляют записи:
- a 2 — её можно произносить как « а в квадрате»;
- a 3 — её можно произносить как « а в кубе».
Конечно, выражения выше можно читать и по определению степени:
- a 2 — « а во второй степени»;
- a 3 — « а в третьей степени».
Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0) .
Степенью числа « а » с показателем n = 1 является само это число:
a 1 = a
Любое число в нулевой степени равно единице.
a 0 = 1
Ноль в любой натуральной степени равен нулю.
0 n = 0
Единица в любой степени равна 1.
1 n = 1
Выражение 0 0 (ноль в нулевой степени) считают лишённым смысла.
При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.
Пример. Возвести в степень.
- 5 3 = 5 · 5 · 5 = 125
- 2,5 2 = 2,5 · 2,5 = 6,25
- (
3 4 ) 4 =
3 4 ·
3 4 ·
3 4 ·
3 4 =
3 · 3 · 3 · 3 4 · 4 · 4 · 4 =
81 256
Возведение в степень отрицательного числа
Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.
При возведении в степень положительного числа получается положительное число.
При возведении нуля в натуральную степень получается ноль.
При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.
Рассмотрим примеры возведения в степень отрицательных чисел.
Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.
Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.
Отрицательное число, возведённое в чётную степень, есть число положительное .
Отрицательное число, возведённое в нечётную степень, — число отрицательное .
Квадрат любого числа есть положительное число или нуль, то есть:
a 2 ≥ 0 при любом a .
- 2 · (−3) 2 = 2 · (−3) · (−3) = 2 · 9 = 18
- −5 · (−2) 3 = −5 · (−8) = 40
Обратите внимание!
При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5) 4 и −5 4 это разные выражения. Результаты возведения в степень данных выражений будут разные.
Вычислить (−5) 4 означает найти значение четвёртой степени отрицательного числа.
В то время как найти « −5 4 » означает, что пример нужно решать в 2 действия:
- Возвести в четвёртую степень положительное число 5 .
5 4 = 5 · 5 · 5 · 5 = 625 - Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
−5 4 = −625
Пример. Вычислить: −6 2 − (−1) 4
- 6 2 = 6 · 6 = 36
- −6 2 = −36
- (−1) 4 = (−1) · (−1) · (−1) · (−1) = 1
- −(−1) 4 = −1
- −36 − 1 = −37
Порядок действий в примерах со степенями
Вычисление значения называется действием возведения в степень. Это действие третьей ступени.
В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление , а в конце сложение и вычитание .
Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.
Для облегчения решения примеров полезно знать и пользоваться таблицей степеней, которую вы можете бесплатно скачать на нашем сайте.
Для проверки своих результатов вы можете воспользоваться на нашем сайте калькулятором «Возведение в степень онлайн».
Что ты хочешь узнать?
Ответ
-2*-2=4 а если -2^3 то -2*-2*-2=-8
- Комментарии
- Отметить нарушение
Ответ
При возведении в квадрат отрицательного числа, ответ всегда будет положительным.
«>