Что такое супервизор в блоке питания

технический журнал для специалистов сервисных служб

Супервизоры напряжений для системных источников питания семейства WT751x

В схемотехнике современных системных источников питания, практически, обязательным становится такой элемент, как супервизор напряжений. Супервизор напряжений в большинстве случаев представляет собой отдельную микросхему, функцией которой является контроль выходных напряжений блока питания и генерация сигнала PowerGood . Кроме того, супервизор напряжений является тем элементом, который обеспечивает запуск и выключение блока питания. На сегодняшний день мировая электронная промышленность предлагает множество различных супервизоров напряжения, но одними из самых популярных при разработке блоков питания являются, несомненно, микросхемы семейства WT 751 x , выпускаемые компанией Weltrend Semiconductor .

Компанией Weltrend Semiconductor предлагается несколько типов супервизоров, как простых трехканальных, так и современных с расширенным набором функций по контролю выходных токов и напряжений. Сегодня мы обсудим самых младших представителей семейства WT 751 x , а именно супервизоры WT 7510, WT 7511 и WT 7512, которые являются простыми трехканальными супервизорами, контролирующими только величину основных выходных напряжений. Но, несмотря на свою простоту, эти микросхемы достаточно широко применялись и применяются в системных блоках питания.

Трехканальные супервизоры напряжений WT 751 x разработаны специально для системных блоков питания персональных компьютеров с целью уменьшения количества применяемых электронных компонентов и упрощения схемотехники управляющих каскадов. Данные микросхемы выполняют функции цепей защиты от превышения и от снижения выходных напряжений блока питания, функции формирователя сигнала Power Good (питание в норме), и функции контроля сигнала PSON (сигнал включения блока питания). Таким образом, применение данной микросхемы способно значительно упросить схемотехнику блока питания, так как супервизор напряжений заменяет собой целый ряд каскадов.

К особенностям микросхем семейства WT 751 x можно отнести:

— широкий диапазон питающих напряжений: от 4В до 15В;

— обеспечение защиты от превышения напряжений в каналах +5 V , +3.3 V и +12 V ;

— обеспечение защиты от снижения напряжений в каналах +5 V и +3.3 V ;

— наличие выхода с открытым коллектором для формирования сигнала защиты при ошибках в работе блока питания;

— наличие выхода с открытым коллектором для формирования сигнала Power Good (по состоянию напряжений +5 V и +3.3 V );

— обеспечение временной задержки в 300 мс при формировании сигнала Power Good ;

— обеспечение защиты от ложного срабатывания блока питания при возникновении "скачков" сигнала PS — ON в момент его активизации (защита обеспечивается в течение 38 мс);

— наличие встроенного подавителя помех при переключениях микросхемы (подавитель действует в течение 73 мкс);

— обеспечение временной задержки в 75 мс при срабатывании защиты от снижения напряжений;

— обеспечение временной задержки в 2.4 мс при выключении сигнала FPO сигналом PSON .

Цоколевка корпуса микросхемы представлена на рис.1, а описание ее контактов приводится в табл.1.

Функциональная блок-схема супервизора напряжений WT 751 x представлена на рис.2.

Рассмотрим основные принципы функционирования микросхем WT 751 x .

Основные характеристики супервизоров напряжений WT 751 x приводятся в табл.2.

Нормальное функционирование WT 751 x

Временная диаграмма, поясняющая нормальное функционирование микросхем WT 751 x , представлена на рис.3. Как видно из диаграммы, в момент появления на входе микросхемы питающего напряжения VCC , ее внутренний сигнал RESET устанавливается в высокий уровень, разрешая функционирование всех внутренних компонентов супервизора. Установка сигнала RESET в высокий уровень происходит в момент, когда напряжение VCC достигнет величины 4В. Соответственно, и сброс сигнала RESET произойдет при снижении напряжения VCC до величины менее 4 В. Первоначально, напряжение VCC формируется дежурным источником питания, и, как правило, этим напряжением является +5 V _ SB .

В момент, когда системной платой формируется сигнал PSON # низкого уровня, должен начинаться процесс запуска основного преобразователя блока питания. Чтобы избежать случайного запуска блока питания при коротких просадках сигнала PSON , обеспечивается временная задержка величиной 38 мс. Только спустя это время внутренняя логика супервизора формирует сигнал, которым обеспечивается запуск всех внутренних компонентов и который переводит сигнал FPO # в низкий уровень.

Установка сигнала FPO # в низкий уровень должна приводить к запуску основного преобразователя блока питания. Как правило, сигналом FPO # управляется оптопара цепи запуска основного источника питания.

В момент запуска основного преобразователя все выходные напряжения блока питания (а значит и +3.3 V , +5 V и +12 V ) начинают плавно нарастать. К вторичной обмотке силового импульсного трансформатора подключена цепь формирования сигнала PGI , который получают выпрямлением импульсов ЭДС, наводимых в одной из вторичных обмоток трансформатора. Поэтому сигнал PGI также начинает плавно нарастать в момент запуска основного преобразователя. Когда все выходные напряжения блока питания, а также сигнал PGI достигнут номинальных значений, запустится внутренний счетчик, формирующий временную задержку 300 мс. И только спустя это время сигнал PGO на выходе микросхемы установится в высокий уровень, разрешая запуск микропроцессора на системной плате.

Когда системной платой сигнал PSON # устанавливается в высокий уровень, начинается отключение основного преобразователя. Опять же, чтобы избежать ложных срабатываний блока питания, обеспечивается временная задержка в 38 мс, только после истечения которой изменяется состояние сигналов FPO # и PGO . А именно, сигнал FPO # устанавливается в высокий уровень, выключая через оптопару основной преобразователь, а сигнал PGO сбрасывается в низкий уровень, запрещая работу системной платы и микропроцессора компьютера.

Функционирование WT7 51 x в аварийных режимах

Во-первых, предположим, что во время работы блока питания происходит короткое замыкание в канале +5 V , и напряжение этого канала падает ниже 4В (временная диаграмма на рис.4). Это приводит к тому, что внутренний компаратор короткого замыкания генерирует сигнал 5 UV , который в итоге приводит к установке на входе триггера импульса S . Импульс S формируется с временной задержкой примерно 146 мкс (73мкс + 73 мкс). Активизация сигнала S , приводит к переключению триггера и установке на его Q -выходе высокого уровня, т.е. приводит к блокировке микросхемы. Триггер управляет состоянием сигнала FPO #, который переводится в высокий уровень, что приводит к остановке основного преобразователя и сбросу сигнала PGO в низкий уровень. Для сброса триггера и повторного запуска микросхемы необходимо выключить и снова включить микросхему.

В том случае, если происходит превышение выходных напряжений блока питания, блокировка микросхем WT 751 x происходит аналогичным образом, лишь только временная задержка при выключении будет составлять всего73 мкс.

Во-вторых, рассмотрим ситуацию, когда пропадает входное напряжение блока питания (временная диаграмма на рис.5). В этом случае начинает уменьшаться напряжение сигнала PGI , который снимается с вторичной обмотки импульсного трансформатора. Напряжения +5 V , +3.3 V и +12 V продолжают удерживаться на номинальных уровнях за счет выходных конденсаторов большой емкости. Снижение уровня сигнала PGI практически сразу приводит к сбросу сигнала PGO ( Power Good ) в низкий уровень. Только через некоторый период времени, который определяется емкостью сглаживающих конденсаторов, начинается снижение выходных напряжений блока питания, что приводит к установке сигнала FPO # в высокий уровень. Т.е. состояние ошибки возникает уже после того, как сигнал Power Good запрещает работу центрального микропроцессора.

Диагностирование микросхем семейства WP 751 x

Упрощенная диагностика

Наиболее простым способом проверки микросхемы, является "прозвонка" ее основных контактов с целью выявления пробоя на корпус. Для этого необходимо измерить сопротивление между конт.2 ( GND ) и:

Все эти измерения должны показать очень большое сопротивление. В противном случае, можно говорить о неисправности микросхемы.

Функциональная диагностика

Функциональная диагностика проводится с целью выявления ошибок в работе микросхемы. Функциональную проверку проще всего осуществлять, не выпаивая микросхему. Наиболее простой является следующая проверка:

— от лабораторного источника питания (или от второго системного блока питания) подать напряжение +5В на контакт VCC (конт.7);

— при этом между контактом FPO # (конт.3) и контактом GND (конт.2) должно быть большое сопротивление, а на контакте PSON # (конт.4) должно установится напряжение 3.4В – 3.6В;

— далее соединяем контакт PSON # (конт.4) с GND и в этот момент времени между контактом FPO # (конт.3) и контактом GND (конт.2) сопротивление на очень короткий период времени должно стать малым (поэтому для измерения сопротивления необходимо использовать быстродействующие измерительные приборы).

Полная функциональная проверка

Для осуществления этой проверки лучше всего поступить следующим образом: тестируемый блок питания с микросхемой WT 751 x не включать в сеть, а не его выходы подать напряжения +5 V , +3.3 V , +12 V и +5 VSB от другого работоспособного блока питания, который включается в сеть и запускается. Таким образом, имитируется наличие всех выходных напряжений тестируемого блока питания. Однако при таком включении следует еще проанализировать и сигнал PGI . Если этот сигнал формируется из импульсов вторичной обмотки силового трансформатора, то на конт.1 микросхемы необходимо будет подать напряжение напрямую (с помощью перемычки) с канала +3.3 V . Собрав такой диагностический стенд и запустив его, тестируем выходные сигналы супервизора:

— при высоком уровне сигнала PSON # на выходе FPO # должен быть высокий уровень, а на выходе PGO – низкий.

— при подаче на контакт PSON # низкого уровня (перемычкой на корпус) на выходе FPO # устанавливается низкий уровень, а на выходе PGO – высокий;

— далее можно отключать от тестируемого блока питания отдельные напряжения (например, +5В) и контролировать изменение состояний сигналов FPO # и PGO .

Методика проверки может быть дополнена и расширена, исходя необходимости и возникающей неисправности блока питания. Для этого достаточно внимательно изучить материал настоящей публикации. – все определяется лишь инструментальным оснащением стенда и фантазией специалиста.

В качестве примера практического варианта применения микросхемы WT 7510 представляем принципиальную схему блока питания PowerMan IP — P 350 AJ . В данной схеме можно отметить несколько интересных моментов.

Во-первых, в данной схеме разработчики обеспечивают контроль не только напряжений +3.3В, +5В и +12В, но и отрицательных напряжений в каналах -5В и -12В. Отрицательные напряжения контролируются через вход V 33, который предназначен, в принципе, для контроля напряжения +3.3В. К этому входу дополнительно подключен транзистор Q 6, который открывается в случае возникновения коротких замыканий или при большой нагрузке в отрицательных каналах напряжений. Контроль тока в каналах отрицательных напряжений осуществляется с помощью сумматора напряжений, состоящего из R 66/ R 67/ R 62/ D 21. Этот сумматор обеспечивает суммирование отрицательных напряжений и напряжения канала +5В. Результатом суммирования является нулевое напряжение в средней точке резисторов R 62/ R 67. При возникновении короткого замыкания в отрицательном канале напряжение средней точки сумматора становится положительным, это приводит к открыванию транзистора Q 6 и шунтированию контакта V 33 на землю. Такое состояние интерпретируется микросхемой как короткое замыкание (снижение напряжения) в канале +3.3В, что приводит к блокировке супервизора и выключению источника питания.

Читайте также:  Сравнение note 9 и iphone xs max

Во-вторых, в схеме предусмотрен вариант упреждающего сброса в низкий уровень сигнала Power Good ( PGO ) при пропадании сетевого напряжения. Для этого импульсы, снимаемые с конт.5 силового импульсного трансформатора Т1, выпрямляются диодом D 14 и сглаживаются конденсатором C 36. Далее делитель R 46/ R 47 создает на контакте PGI (конт.1) напряжение, наличие которого горит о генерации импульсного преобразователя.

В-третьих, необходимо отметить, что в представленном блоке питания основной преобразователь построен по однотактной схеме. В подобных источниках питания запуск основного преобразователя очень часто осуществляется подачей питающего напряжения на микросхему ШИМ-контроллера после активизации сигнала PSON . Соответственно, выключение преобразователя происходит в момент, когда это питающее напряжение снимается с микросхемы. В рассматриваемой схеме подача питающего напряжения на ШИМ-контроллер ( U 1) осуществляется с помощью оптопары PC 1, которая, в сою очередь, управляется сигналом FPO супервизора. Перевод сигнала FPO в низкий уровень приводит к протеканию тока через светодиод оптопары PC 1, и, как следствие, к включению основного преобразователя.

И, наконец, питание микросхемы супервизора осуществляется напряжением +5 V _ SB в период, когда работает только дежурный источник питания. После запуска основного преобразователя, супервизор начинает питаться от канала +12 V через D 18.

В статье описаны микросхемы для микропроцессорных устройств — супервизоры (детекторы) напряжений, которые служат для четкого и точного определения момента снижения питающих напряжений до заданного уровня. Показано, что будучи простыми трехвыводными устройствами, эти микросхемы имеют довольно большие функциональные возможности, которые позволяют применять их и в других интересных и полезных устройствах — источниках электропитания, зарядных устройствах для аккумуляторов, импульсных устройствах и т. д. Описаны результаты исследования микросхем супервизоров и даны рекомендации по их применению.

МИКРОСХЕМА МС34064
Роль точного контроля напряжений питания непрерывно возрастает. Массовое применение устройств с батарейным (в частности аккумуляторным) питанием сделало непрерывный контроль напряжения питания обязательным для многих устройств» например, калькуляторов, карманных компьютеров, МРЗ-плееров, электронных часов и т. д. Разрядка аккумуляторов ниже определенного уровня губительно сказывается на сроке их работы, также как и перезарядка. Кроме того, многие электронные приборы, даже при сетевом питании, чувствительны к изменению напряжения источника. В первую очередь это относится к таким устройствам, как микропроцессоры, аналого-цифровые и цифро-аналоговые преобразователи, модули памяти и т. д.

Известно огромное число устройств контроля напряжения питания — от банального стрелочного вольтметра до сложных интеллектуальных блоков зарядки аккумуляторов. Нередко точность контроля и температурная стабильность порогов у многих таких устройств оказывалась явно низкой, а их повышение вело к неоправданному усложнению узлов контроля и увеличению потребляемой ими мощности. Учитывая эту ситуацию» ряд крупных фирм микроэлектронной промышленности приступил к серийному производству специальных микросхем супервизоров напряжения.

Одной из наиболее распространенных микросхем супервизоров напряжения является МС34064/33064, разработанная фирмой Motorola [1). Она выпускается также фирмами LinFinity Microelectronics, On Semiconductor и др. Микросхема (рис. 1) содержит высокоточный температурно-ком-пенсированный источник опорного напряжения, делитель напряжения R1R2, прецизионный гистерезисный компаратор ГИК с нагрузочным резистором R3 и выходной ключевой транзистор VT с диодом VD.
В микросхеме 21 транзистор и она выпускается во всех наиболее распространенных корпусах для транзисторов и микросхем малой степени интеграции, например в транзисторном корпусе Т0226АА и в корпусах вось-мивыводных микросхем 751 (SO-8) и 846А (Micro-8).

Основной задачей при разработке новых микросхем было их предельно простое применение по основному назначению (контроль за падением напряжения ниже заданного уровня) и наличие только трех выводов. Это несколько сужает возможные области применения таких массовых микросхем и требует внимательного изучения всех особенностей их работы, что и составляет цель данной статьи.
Прежде всего рассмотрим функциональную схему супервизора (рис. 1, а) более подробно. Ясно, что порог срабатывания задается напряжением опорного источника Uref = 1,2 В и делителем напряжения R1R2. В технической документации задаются пороги срабатывания и гистерезис, они приведены в табл. 1.

Параметр Мин. Тип. Макс.
Верхний порог, В 4,5 4,61 4,7
Нижний порог. В 4,5 4,59 4,7
Гистерезис, В 0,01 0,02 0,05

Гистерезис необходим для исключения срабатывания компаратора от случайных быстрых изменений напряжения питания и шумов. Из-за существенной нелинейности входящих в супервизор элементов корректная работа устройства обеспечивается вблизи области срабатывания и далеко за ее пределами — примерно 1. 9 В, хотя допустимый диапазон входных напряжений шире — 1. 10В. Максимальная рассеиваемая мощность 520.. .650 мВт в зависимости от корпуса. Максимальный втекающий в выход ток — 100 мА, диапазон рабочих температур 0. +70°С для микросхем обычного применения и -40. +85 °С для микросхем в промышленном исполнении.

Статические характеристики
В руководстве по микросхеме МС34064/33064 [1] приведено детальное описание статических характеристик микросхем. Рассмотрим основные их них. Главной является передаточная характеристика, показанная на рис. 2.

Она описывает зависимость выходного напряжения от входного. Нетрудно заметить, что эта характеристика куда сложнее, чем это можно было бы предположить из идеализированного описания микросхемы. Лишь в средней части (в области входных напряжений примерно 1. 9В она соответствует описанию типовой роли прибора.

В области малых напряжений (менее 0,5 В), когда источник опорного напряжения перестает работать, передаточная характеристика имеет характерный выброс с линейным участком, на котором выходное напряжение равно входному, но уже при напряжении 0,5 В выходное напряжение падает практически до нуля и остается таким до увеличения входного напряжения до основного порога около 4,6 В. Далее, вплоть до напряжения чуть больше 9 В, выходное напряжение после скачка снова становится практически равным входному. А при входном напряжении более 9,2 В выходное напряжение скачком уменьшается практически до нуля. Причина подобного поведения не поясняется, но это означает, что микросхема может использоваться для двухпорогового контроля. Неясно и то, является ли точное значение 2 для отношения напряжений порогов преднамеренным или случайным обстоятельством.

Исследования показывают, что в малой области главного порога (напряжение около 4,6 В) передаточная характеристика имеет гистерезис, как показано на рис. 3.

При снятии характеристик в статическом режиме ширина петли гистерезиса составляет 20 мВ. Наличие гистерезиса исключает дребезг при переключении, как при нарастании, так и уменьшении контролируемого напряжения, а малая величина гистерезиса делает двойственность порога (при увеличении и уменьшении напряжения) практически незаметной.

Высокая стабильность порога — отличительное качество микросхем данной серии. На рис. 4 представлены температурные изменения верхнего и нижнего порогов в диапазоне температуры окружающей среды ТА = -40.. .+85 °С, разность порогов уменьшается при понижении температуры.

Интересный вид имеют зависимости входного тока от входного напряжения, представленные на рис. 5 для трех значений температуры окружающей среды, в целом они носят почти линейный характер с небольшим отклонением от линейности в области малых значений, однако в области порогов (4,6 и 9,2 В) эти зависимости имеют характерные падающие и нестабильные участки, обусловленные регенеративным переключением устройства. В определенных условиях это может порождать паразитные или полезные релаксационные колебания с частотой 1 МГц и выше.

Когда транзистор VT микросхемы открыт, выходное напряжение определяется начальным участком воль-тамперной характеристики насыщенного транзистора. На рис. 6 показана зависимость выходного напряжения от втекающего выходного тока для разных значений температуры окружающей среды ТА.

Максимальное значение выходного тока (до выхода из насыщения) при нормальных условиях составляет около 25 мА> что достаточно для яркого свечения светодиодного индикатора или включения маломощного реле.

Для оценки свойств микросхем полезно также знать вольтамперную характеристику диода VD, она показана на рис. 7. Из нее видно» что диод выдерживает ток до 70 мА при прямом падении напряжения на нем 1,6 В.

Статические характеристики супервизоров питания неплохо описывают их применение при медленно изменяющихся входных напряжениях, что характерно для многих стандартных применений таких микросхем. Из них следует, что по основному назначению их можно использовать при высокостабильном пороге около 4,6 В. Использование второго порога 9,2 В в технической документации не оговаривается, но, как показала практика, вполне возможно (максимальное напряжение питания с запасом взято равным 10 В).

ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ
Узлы порогового контроля со светодиодными индикаторами являются самыми простыми. Устройство (рис. 8, а), приведенное в описании микросхемы, обеспечивает свечение светодиода при падении напряжения источника питания ниже основного порога 4,6 В.
При увеличении питающего напряжения свыше 9,2 В свечения прекращается. Если узел выполнен так, как показано на рис. 13, б, обеспечивается четкая индикация превышения напряжением питания значения 4,6 В, а также и контроль за спадом напряжения ниже 9,2 В. Порог можно увеличивать, включая вход через диод или подключая его к источнику питания через низкоомный (единицы кОм) делитель. К сожалению, способов понизить напряжение порога у данных микросхем нет.

Будучи высокочувствительными регенеративными устройствами состабильным порогом срабатывания, супервизоры могут применяться в огромном количестве пороговых схем, например, в качестве триггеров Шмитта, устройств контроля сигналов с фоторезисторов, фотодиодов и фототранзисторов, пороговых устройств контроля температуры с резисторны-ми и диодными датчиками температуры и т. д. Принципы построения таких устройств вполне очевидны.

На рис 9 показан основной способ включения микросхемы супервизора питающего напряжения для создания сигнала сброса микропроцессорного устройства.
Резистор RH позволяет изменять петлю гистерезиса (ранее приводились данные для RH = 0), что дает возможность в широких пределах менять условия сброса микропроцессора. Обычно гистерезис позволяет создавать зону нечувствительности, предотвращающую сброс микропроцессорных устройств при небольших случайных скачках напряжения питания.

Супервизоры напряжения питания могут использоваться в зарядных устройствах для контроля уровня зарядки аккумуляторных батарей. Примером может служить схема устройства, показанная на рис. 10.

Устройство служит для контроля зарядки аккумуляторной батареи GB1 от солнечной батареи BL1. Пока уровень напряжения GB1 ниже основного порога, напряжение на выходе микросхемы супервизора равно нулю и внешний транзистор закрыт. Ток от солнечной батареи через диод заряжает GB1. Но если напряжение на GB1 начинает превышать заданный порог, сигнал на выходе супервизора увеличивается и внешний транзистор открывается, замыкая на себя ток элементов солнечной батареи. Перезарядка GB1 предотвращается и можно эксплуатировать аккумуляторную батарею без присмотра.

ИМПУЛЬСНЫЕ УСТРОЙСТВА НА МИКРОСХЕМАХ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ
Супервизоры также могут применяться при построении разнообразных импульсных устройств. Ниже описаны некоторые из них, рекомендуемые производителями микросхем импульсных устройств.

Читайте также:  Как построить компьютерную сеть

Типичным применением супервизора является возбудитель мощного полевого транзистора. Мощные полевые транзисторы крайне нежелательно запускать импульсами с пологими участками нарастания и спада, например треугольными [2]. В этом случае транзисторы длительное время находятся в состоянии, когда одновременно ток стока и напряжение на стоке велики, что ведет к резкому увеличению мгновенной рассеиваемой мощности, перегреву транзисторов и снижению к. п. д. ключевых устройств. На рис. 11 показана схема узла запуска, исключающего из входного напряжения область, где возможна перегрузка мощного полевого транзистора по мгновенной мощности рассеивания. Варианты умощнения вы-хода микросхемы рассмотрены в [3].

Малая инерционность срабатывания микросхемы супервизора не всегда является достоинством. Даже при создании сигнала сброса микропроцессора (применения микросхемы по прямому назначению) желательно создать задержку сигнала сброса, чтобы сброс не происходил при очень коротких перепадах напряжения питания. Для этого следует использовать дополнительный конденсатор CDLY который создает экспоненциальное нарастание сигнала сброса. Время задержки вычисляется выражением, приведенным в правом нижнем углу типовой схемы сброса микропроцессора (рис. 12).

Микросхема супервизора напряжения может использоваться для формирования из входного сигнала задержанного перепада напряжения или задержанного прямоугольного импульса. Схема формирователя показана на рис. 13, его основой является интегрирующая КС-цепь на входе, которая формирует экспоненциальные фронты и спады на входе микросхемы.

Если предельное напряжение экспоненциального перепада на входе меньше второго порога составляет 9,2 В, выходной перепад формируется с задержкой в момент, когда экспоненциально растущее напряжение достигает уровня основного порога 4,6 В. Осциллограммы входного и выходного напряжения узла (рис. 13) для такого случая показаны на рис 14. Однако если предельное напряжение экспоненциального перепада на входе микросхемы супервизора превышает второй порог 9,2 В, будет формироваться уже не выходной перепад, а выходной прямоугольный импульс. Это связано с тем, при достижении экспоненциальным напряжением значения второго порога транзистор микросхемы снова открывается и напряжение на выходе становится близким к нулю. Осциллограммы входного и выходного напряжения для последнего случая показаны на рис. 15.

Длительность задержки выходного перепада составляет:


где UH — напряжение основного порога 4.6 В. Эта же формула при UH = 9,2 В определяет задержку второго (отрицательного) перепада выходного напряжения» а разность задержек — длительность выходного прямоугольного импульса.

Используя микросхему супервизора, можно построить и импульсный генератор (мультивибратор). Простейший вариант на основе использования второго порога работает не очень стабильно и дает жесткое самовозбуждение. Для того, чтобы срабатывал основной порог, узел приходится дополнять транзисторным инвертором, как показано на рис 16. Он обеспечивает зарядку и разрядку конденсатора С через резистор R. При достижении верхнего входного напряжения петли гистерезиса транзистор включается и конденсатор разряжается до нижнего порога. Затем транзистор выключается, и конденсатор начинает заряжаться до верхнего входного напряжения петли гистерезиса и т. д.

Осциллограммы напряжения на конденсаторе С и коллекторе внешнего транзистора показаны на рис. 17.

Поскольку разность порогов мала, напряжение на конденсаторе имеет участки почти линейного нарастания и спада. Импульсы напряжения на коллекторе внешнего транзистора близки к прямоугольным (рис 17). Из-за малой разности порогов и малой допустимой неличины R частота колебаний генератора довольно велика и составляет около 300 кГц при R = 7,5 кОм.

Еще один вариант применения супервизора напряжения показан на рис 18. Это маломощный импульсный стабилизатор (преобразователь) напряжения 11,5. 14,5 В в стабильное постоянное напряжение 5 В при токе 50 мА с максимальным изменением 35 мВ. При напряжении питания 12,6 В и изменении тока нагрузки 0.. .50 мА нестабильность выходного напряжения не превышает 12 мВ. Пульсации напряжения на выходе не более 60 мВ (полный размах), а КПД — 77 %. Любопытно отметить, что это довольно высокое значение коэффициента полезного действия, поскольку в маломощных стабилизаторах получить его намного труднее, чем в мощных, из-за значительной мощности, расходуемой на питание вспомогательных устройств.

Работа устройства основана на импульсном управлении биполярным транзистором МР5У51А,включенным по схеме ключевого понижающего стабилизатора релаксационного типа. Импульсы с коллектора транзистора фильтруются LC-фильтром, и его выходное напряжение используется как входное для микросхемы супервизора. Делитель на его входе повышает порог до уровня 5 В, которое с учетом пульсаций определяет выходное напряжение преобразователя.

За рубежом супервизоры питания выпускаются почти всеми полупроводниковыми
фирмами, например [4, 5]. Относительно давно существует отечественная серия микросхем К1171СП2хх [6], начат выпуск серии микросхем К1274хх [7], функциональная схема показана на рис 19. Источник опорного напряжения изображен в виде стабилитрона.
Обозначение «хх» указывает на типовое напряжение порога срабатывания— 29 при пороге 2,83. 2,97 В, 33 при 3,23. 3,37 В и т. д. до 45 при 4,43. 4,57 В. Выпуск ряда модификаций микросхем с разными порогами упрощает их выбор. Максимальное допустимое рабочее напряжение увеличено до 15 В. В остальном микросхемы аналогичны описанным МС34064, в том числе и по принципам схемного применения.

ЛИТЕРАТУРА:
1. МС34064, МС33064. Undervoltage Sensing Circuit. Motorola, 1пс.У 1996.
2. В. П. Дьяконов, А. А. Максимчук, А. М. Ремнев, В. Ю. Смердов. Энциклопедия устройств на полевых транзисторах. Под общей редакцией проф. В. П. Дьяконова. — М: СОЛОН-Р, 2002.
3. С. Алексеев. Триггеры Шмита без источника питания. — Схемотехника, 2002, Л«? 12, с. 24.
4. KIA7019AP/AF/AT- KIA7045AP/ AF/AT. Bipolar Linear Integrated Circuit KEC, 2002.
5. M. Потапчук. Супервизоры серии MCPIOx фирмы Microchip. — Схемотехника, 2006, № 1, с. 10, 11.
6. Микросхемы для линейных источников питания и их применение. —М; Додэка, 1998.
7. А. Нефедов. Новые микросхемы для источников питания. — М.: Ремонт и сервис, 2006, .№? 5, с. 61, 62.

В статье описаны микросхемы для микропроцессорных устройств — супервизоры (детекторы) напряжений, которые служат для четкого и точного определения момента снижения питающих напряжений до заданного уровня. Показано, что будучи простыми трехвыводными устройствами, эти микросхемы имеют довольно большие функциональные возможности, которые позволяют применять их и в других интересных и полезных устройствах — источниках электропитания, зарядных устройствах для аккумуляторов, импульсных устройствах и т. д. Описаны результаты исследования микросхем супервизоров и даны рекомендации по их применению.

МИКРОСХЕМА МС34064
Роль точного контроля напряжений питания непрерывно возрастает. Массовое применение устройств с батарейным (в частности аккумуляторным) питанием сделало непрерывный контроль напряжения питания обязательным для многих устройств» например, калькуляторов, карманных компьютеров, МРЗ-плееров, электронных часов и т. д. Разрядка аккумуляторов ниже определенного уровня губительно сказывается на сроке их работы, также как и перезарядка. Кроме того, многие электронные приборы, даже при сетевом питании, чувствительны к изменению напряжения источника. В первую очередь это относится к таким устройствам, как микропроцессоры, аналого-цифровые и цифро-аналоговые преобразователи, модули памяти и т. д.

Известно огромное число устройств контроля напряжения питания — от банального стрелочного вольтметра до сложных интеллектуальных блоков зарядки аккумуляторов. Нередко точность контроля и температурная стабильность порогов у многих таких устройств оказывалась явно низкой, а их повышение вело к неоправданному усложнению узлов контроля и увеличению потребляемой ими мощности. Учитывая эту ситуацию» ряд крупных фирм микроэлектронной промышленности приступил к серийному производству специальных микросхем супервизоров напряжения.

Одной из наиболее распространенных микросхем супервизоров напряжения является МС34064/33064, разработанная фирмой Motorola [1). Она выпускается также фирмами LinFinity Microelectronics, On Semiconductor и др. Микросхема (рис. 1) содержит высокоточный температурно-ком-пенсированный источник опорного напряжения, делитель напряжения R1R2, прецизионный гистерезисный компаратор ГИК с нагрузочным резистором R3 и выходной ключевой транзистор VT с диодом VD.
В микросхеме 21 транзистор и она выпускается во всех наиболее распространенных корпусах для транзисторов и микросхем малой степени интеграции, например в транзисторном корпусе Т0226АА и в корпусах вось-мивыводных микросхем 751 (SO-8) и 846А (Micro-8).

Основной задачей при разработке новых микросхем было их предельно простое применение по основному назначению (контроль за падением напряжения ниже заданного уровня) и наличие только трех выводов. Это несколько сужает возможные области применения таких массовых микросхем и требует внимательного изучения всех особенностей их работы, что и составляет цель данной статьи.
Прежде всего рассмотрим функциональную схему супервизора (рис. 1, а) более подробно. Ясно, что порог срабатывания задается напряжением опорного источника Uref = 1,2 В и делителем напряжения R1R2. В технической документации задаются пороги срабатывания и гистерезис, они приведены в табл. 1.

Параметр Мин. Тип. Макс.
Верхний порог, В 4,5 4,61 4,7
Нижний порог. В 4,5 4,59 4,7
Гистерезис, В 0,01 0,02 0,05

Гистерезис необходим для исключения срабатывания компаратора от случайных быстрых изменений напряжения питания и шумов. Из-за существенной нелинейности входящих в супервизор элементов корректная работа устройства обеспечивается вблизи области срабатывания и далеко за ее пределами — примерно 1. 9 В, хотя допустимый диапазон входных напряжений шире — 1. 10В. Максимальная рассеиваемая мощность 520.. .650 мВт в зависимости от корпуса. Максимальный втекающий в выход ток — 100 мА, диапазон рабочих температур 0. +70°С для микросхем обычного применения и -40. +85 °С для микросхем в промышленном исполнении.

Статические характеристики
В руководстве по микросхеме МС34064/33064 [1] приведено детальное описание статических характеристик микросхем. Рассмотрим основные их них. Главной является передаточная характеристика, показанная на рис. 2.

Она описывает зависимость выходного напряжения от входного. Нетрудно заметить, что эта характеристика куда сложнее, чем это можно было бы предположить из идеализированного описания микросхемы. Лишь в средней части (в области входных напряжений примерно 1. 9В она соответствует описанию типовой роли прибора.

В области малых напряжений (менее 0,5 В), когда источник опорного напряжения перестает работать, передаточная характеристика имеет характерный выброс с линейным участком, на котором выходное напряжение равно входному, но уже при напряжении 0,5 В выходное напряжение падает практически до нуля и остается таким до увеличения входного напряжения до основного порога около 4,6 В. Далее, вплоть до напряжения чуть больше 9 В, выходное напряжение после скачка снова становится практически равным входному. А при входном напряжении более 9,2 В выходное напряжение скачком уменьшается практически до нуля. Причина подобного поведения не поясняется, но это означает, что микросхема может использоваться для двухпорогового контроля. Неясно и то, является ли точное значение 2 для отношения напряжений порогов преднамеренным или случайным обстоятельством.

Читайте также:  Аккумуляторы для игрушек на радиоуправлении

Исследования показывают, что в малой области главного порога (напряжение около 4,6 В) передаточная характеристика имеет гистерезис, как показано на рис. 3.

При снятии характеристик в статическом режиме ширина петли гистерезиса составляет 20 мВ. Наличие гистерезиса исключает дребезг при переключении, как при нарастании, так и уменьшении контролируемого напряжения, а малая величина гистерезиса делает двойственность порога (при увеличении и уменьшении напряжения) практически незаметной.

Высокая стабильность порога — отличительное качество микросхем данной серии. На рис. 4 представлены температурные изменения верхнего и нижнего порогов в диапазоне температуры окружающей среды ТА = -40.. .+85 °С, разность порогов уменьшается при понижении температуры.

Интересный вид имеют зависимости входного тока от входного напряжения, представленные на рис. 5 для трех значений температуры окружающей среды, в целом они носят почти линейный характер с небольшим отклонением от линейности в области малых значений, однако в области порогов (4,6 и 9,2 В) эти зависимости имеют характерные падающие и нестабильные участки, обусловленные регенеративным переключением устройства. В определенных условиях это может порождать паразитные или полезные релаксационные колебания с частотой 1 МГц и выше.

Когда транзистор VT микросхемы открыт, выходное напряжение определяется начальным участком воль-тамперной характеристики насыщенного транзистора. На рис. 6 показана зависимость выходного напряжения от втекающего выходного тока для разных значений температуры окружающей среды ТА.

Максимальное значение выходного тока (до выхода из насыщения) при нормальных условиях составляет около 25 мА> что достаточно для яркого свечения светодиодного индикатора или включения маломощного реле.

Для оценки свойств микросхем полезно также знать вольтамперную характеристику диода VD, она показана на рис. 7. Из нее видно» что диод выдерживает ток до 70 мА при прямом падении напряжения на нем 1,6 В.

Статические характеристики супервизоров питания неплохо описывают их применение при медленно изменяющихся входных напряжениях, что характерно для многих стандартных применений таких микросхем. Из них следует, что по основному назначению их можно использовать при высокостабильном пороге около 4,6 В. Использование второго порога 9,2 В в технической документации не оговаривается, но, как показала практика, вполне возможно (максимальное напряжение питания с запасом взято равным 10 В).

ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ
Узлы порогового контроля со светодиодными индикаторами являются самыми простыми. Устройство (рис. 8, а), приведенное в описании микросхемы, обеспечивает свечение светодиода при падении напряжения источника питания ниже основного порога 4,6 В.
При увеличении питающего напряжения свыше 9,2 В свечения прекращается. Если узел выполнен так, как показано на рис. 13, б, обеспечивается четкая индикация превышения напряжением питания значения 4,6 В, а также и контроль за спадом напряжения ниже 9,2 В. Порог можно увеличивать, включая вход через диод или подключая его к источнику питания через низкоомный (единицы кОм) делитель. К сожалению, способов понизить напряжение порога у данных микросхем нет.

Будучи высокочувствительными регенеративными устройствами состабильным порогом срабатывания, супервизоры могут применяться в огромном количестве пороговых схем, например, в качестве триггеров Шмитта, устройств контроля сигналов с фоторезисторов, фотодиодов и фототранзисторов, пороговых устройств контроля температуры с резисторны-ми и диодными датчиками температуры и т. д. Принципы построения таких устройств вполне очевидны.

На рис 9 показан основной способ включения микросхемы супервизора питающего напряжения для создания сигнала сброса микропроцессорного устройства.
Резистор RH позволяет изменять петлю гистерезиса (ранее приводились данные для RH = 0), что дает возможность в широких пределах менять условия сброса микропроцессора. Обычно гистерезис позволяет создавать зону нечувствительности, предотвращающую сброс микропроцессорных устройств при небольших случайных скачках напряжения питания.

Супервизоры напряжения питания могут использоваться в зарядных устройствах для контроля уровня зарядки аккумуляторных батарей. Примером может служить схема устройства, показанная на рис. 10.

Устройство служит для контроля зарядки аккумуляторной батареи GB1 от солнечной батареи BL1. Пока уровень напряжения GB1 ниже основного порога, напряжение на выходе микросхемы супервизора равно нулю и внешний транзистор закрыт. Ток от солнечной батареи через диод заряжает GB1. Но если напряжение на GB1 начинает превышать заданный порог, сигнал на выходе супервизора увеличивается и внешний транзистор открывается, замыкая на себя ток элементов солнечной батареи. Перезарядка GB1 предотвращается и можно эксплуатировать аккумуляторную батарею без присмотра.

ИМПУЛЬСНЫЕ УСТРОЙСТВА НА МИКРОСХЕМАХ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ
Супервизоры также могут применяться при построении разнообразных импульсных устройств. Ниже описаны некоторые из них, рекомендуемые производителями микросхем импульсных устройств.

Типичным применением супервизора является возбудитель мощного полевого транзистора. Мощные полевые транзисторы крайне нежелательно запускать импульсами с пологими участками нарастания и спада, например треугольными [2]. В этом случае транзисторы длительное время находятся в состоянии, когда одновременно ток стока и напряжение на стоке велики, что ведет к резкому увеличению мгновенной рассеиваемой мощности, перегреву транзисторов и снижению к. п. д. ключевых устройств. На рис. 11 показана схема узла запуска, исключающего из входного напряжения область, где возможна перегрузка мощного полевого транзистора по мгновенной мощности рассеивания. Варианты умощнения вы-хода микросхемы рассмотрены в [3].

Малая инерционность срабатывания микросхемы супервизора не всегда является достоинством. Даже при создании сигнала сброса микропроцессора (применения микросхемы по прямому назначению) желательно создать задержку сигнала сброса, чтобы сброс не происходил при очень коротких перепадах напряжения питания. Для этого следует использовать дополнительный конденсатор CDLY который создает экспоненциальное нарастание сигнала сброса. Время задержки вычисляется выражением, приведенным в правом нижнем углу типовой схемы сброса микропроцессора (рис. 12).

Микросхема супервизора напряжения может использоваться для формирования из входного сигнала задержанного перепада напряжения или задержанного прямоугольного импульса. Схема формирователя показана на рис. 13, его основой является интегрирующая КС-цепь на входе, которая формирует экспоненциальные фронты и спады на входе микросхемы.

Если предельное напряжение экспоненциального перепада на входе меньше второго порога составляет 9,2 В, выходной перепад формируется с задержкой в момент, когда экспоненциально растущее напряжение достигает уровня основного порога 4,6 В. Осциллограммы входного и выходного напряжения узла (рис. 13) для такого случая показаны на рис 14. Однако если предельное напряжение экспоненциального перепада на входе микросхемы супервизора превышает второй порог 9,2 В, будет формироваться уже не выходной перепад, а выходной прямоугольный импульс. Это связано с тем, при достижении экспоненциальным напряжением значения второго порога транзистор микросхемы снова открывается и напряжение на выходе становится близким к нулю. Осциллограммы входного и выходного напряжения для последнего случая показаны на рис. 15.

Длительность задержки выходного перепада составляет:


где UH — напряжение основного порога 4.6 В. Эта же формула при UH = 9,2 В определяет задержку второго (отрицательного) перепада выходного напряжения» а разность задержек — длительность выходного прямоугольного импульса.

Используя микросхему супервизора, можно построить и импульсный генератор (мультивибратор). Простейший вариант на основе использования второго порога работает не очень стабильно и дает жесткое самовозбуждение. Для того, чтобы срабатывал основной порог, узел приходится дополнять транзисторным инвертором, как показано на рис 16. Он обеспечивает зарядку и разрядку конденсатора С через резистор R. При достижении верхнего входного напряжения петли гистерезиса транзистор включается и конденсатор разряжается до нижнего порога. Затем транзистор выключается, и конденсатор начинает заряжаться до верхнего входного напряжения петли гистерезиса и т. д.

Осциллограммы напряжения на конденсаторе С и коллекторе внешнего транзистора показаны на рис. 17.

Поскольку разность порогов мала, напряжение на конденсаторе имеет участки почти линейного нарастания и спада. Импульсы напряжения на коллекторе внешнего транзистора близки к прямоугольным (рис 17). Из-за малой разности порогов и малой допустимой неличины R частота колебаний генератора довольно велика и составляет около 300 кГц при R = 7,5 кОм.

Еще один вариант применения супервизора напряжения показан на рис 18. Это маломощный импульсный стабилизатор (преобразователь) напряжения 11,5. 14,5 В в стабильное постоянное напряжение 5 В при токе 50 мА с максимальным изменением 35 мВ. При напряжении питания 12,6 В и изменении тока нагрузки 0.. .50 мА нестабильность выходного напряжения не превышает 12 мВ. Пульсации напряжения на выходе не более 60 мВ (полный размах), а КПД — 77 %. Любопытно отметить, что это довольно высокое значение коэффициента полезного действия, поскольку в маломощных стабилизаторах получить его намного труднее, чем в мощных, из-за значительной мощности, расходуемой на питание вспомогательных устройств.

Работа устройства основана на импульсном управлении биполярным транзистором МР5У51А,включенным по схеме ключевого понижающего стабилизатора релаксационного типа. Импульсы с коллектора транзистора фильтруются LC-фильтром, и его выходное напряжение используется как входное для микросхемы супервизора. Делитель на его входе повышает порог до уровня 5 В, которое с учетом пульсаций определяет выходное напряжение преобразователя.

За рубежом супервизоры питания выпускаются почти всеми полупроводниковыми
фирмами, например [4, 5]. Относительно давно существует отечественная серия микросхем К1171СП2хх [6], начат выпуск серии микросхем К1274хх [7], функциональная схема показана на рис 19. Источник опорного напряжения изображен в виде стабилитрона.
Обозначение «хх» указывает на типовое напряжение порога срабатывания— 29 при пороге 2,83. 2,97 В, 33 при 3,23. 3,37 В и т. д. до 45 при 4,43. 4,57 В. Выпуск ряда модификаций микросхем с разными порогами упрощает их выбор. Максимальное допустимое рабочее напряжение увеличено до 15 В. В остальном микросхемы аналогичны описанным МС34064, в том числе и по принципам схемного применения.

ЛИТЕРАТУРА:
1. МС34064, МС33064. Undervoltage Sensing Circuit. Motorola, 1пс.У 1996.
2. В. П. Дьяконов, А. А. Максимчук, А. М. Ремнев, В. Ю. Смердов. Энциклопедия устройств на полевых транзисторах. Под общей редакцией проф. В. П. Дьяконова. — М: СОЛОН-Р, 2002.
3. С. Алексеев. Триггеры Шмита без источника питания. — Схемотехника, 2002, Л«? 12, с. 24.
4. KIA7019AP/AF/AT- KIA7045AP/ AF/AT. Bipolar Linear Integrated Circuit KEC, 2002.
5. M. Потапчук. Супервизоры серии MCPIOx фирмы Microchip. — Схемотехника, 2006, № 1, с. 10, 11.
6. Микросхемы для линейных источников питания и их применение. —М; Додэка, 1998.
7. А. Нефедов. Новые микросхемы для источников питания. — М.: Ремонт и сервис, 2006, .№? 5, с. 61, 62.